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Abstract
Information Retrieval systems are widely used in a vast number of scenarios, such
as tourism, education, research, etc. In particular, for tourism applications, informa-
tion systems such as web search engines and recommendation systems are used to
allow a user (i.e., the tourist) to look for tourist destinations, hospitality facilities, and
general territorial information. Nowadays, the core of information systems is machine
learning, in particular, learning to rank in the case of web search engines. Learning
to rank learns a ranker that, given a user’s needs (i.e., the query), returns a list of re-
sults ordered by relevance to the query, with the most relevant results at the top of the
returned list. One of the most effective and efficient approaches for learning to rank
is the well-known LambdaMART algorithm. LambdaMART defines a gradient for each
document w.r.t. the information retrieval metric to be optimised, the so-called lambdas.
Intuitively, each lambda describes, with some degree of approximation, how much a
document score should be pushed up or down to improve the ranking. In this work,
we show that lambdas can be incoherent w.r.t. the metric optimised: a document with
high relevance to the user query can receive a downward push larger than a document
with lower relevance. In addition, optimising truncated metrics in order to speed up the
training time can exacerbate this discrepancy and lead to worse model learning. This
behaviour goes far beyond the expected degree of approximation. Moreover, we show
how the practice of truncated metric optimisation introduces an unwanted unfair com-
parison between items (facilities, accommodation, etc.) equally relevant to the user
query. We analyse the idiosyncrasies of LambdaMART gradients, and we introduce
some strategies to remove the exacerbation of gradient incoherency and the unfair
item comparison. We empirically demonstrate on publicly available datasets that the
proposed approach leads to a fairer training process and to models that can achieve
statistically significant improvements in terms of NDCG.

1 Introduction
Information Retrieval (IR) is the field of research focused on retrieving useful informa-
tion from a huge collection of data. Several areas related to computer science have
developed IR strategies.
Two of themost famous and widely used applications of IR strategies areWeb Search

Engines and Recommendation Systems. Nowadays, web search engines and recom-
mendation systems are used in a large variety of scenarios, such as research, educa-
tion, entertainment, tourism, etc. In the context of tourism, web search engines and
recommendation systems are used to book accommodation, look for activities and cul-
tural events in a specific tourist area, or find general territorial information for tourists.



Nowadays, these information retrieval systemsmake extensive use of machine learn-
ing and deep learning approaches to perform the aforementioned tasks. Among these
approaches, there is learning to Rank (LTR), one of the most applied approaches in
IR. LTR is a machine learning approach that includes supervised learning algorithms
to construct rankers that satisfy user needs by sorting by relevance a huge set of items
that mostly contain irrelevant items and only a small fraction of relevant ones. In other
words, a ranker takes as input a user query (e.g., “accommodation in Venice”) and re-
turns a short sorted list of items relevant to the query (e.g., a list of accommodation
in Venice). These items are extracted from a huge set of items (e.g., the World Wide
Web) that are mostly non-relevant (e.g., on the entire World Wide Web there are many
more accommodations outside Venice than in Venice).
In order to provide relevant results, LTR algorithms optimise information retrieval met-

rics. However, most of the information retrieval metrics are ranked-based (i.e., they rely
on the order of the items), so they are discontinuous or flat everywhere. Consequently,
gradient descent strategies to optimise such metrics can not be applied directly.
Despite the non-differentiability of IR metrics, many LTR algorithms are gradient-

based, which either optimise an approximate version of the ranking metric or build gra-
dients based on heuristics as in the case of LambdaMART algorithm defined by Burges
(2010). LambdaMART optimises a non-differentiable loss function that it doesn’t know
by creating an ad-hoc gradient for each document based on heuristics that take into
account the contribution of the document in the rank and the relationship it has with
the other documents. Since LambdaMART is based on heuristics, its gradients are not
exact. In this work, we want to show how LambdaMART and derivatives such as Lamb-
daRank by Burges et al. (2006) and the metric-driven loss functions defined by Wang
et al. (2018) have an inherent problem due to the heuristics used and can generate
incoherencies in gradients.
Moreover, machine learning algorithms (and consequently learning to rank algo-

rithms, too) can provide unfairness for certain groups of users, items, etc. The un-
fairness covers different scenarios, such as discrimination by gender and race, unfair
exposure for the same item from different vendors in e-commerce, etc. Unfairness in
machine learning can be caused by different aspects, such as bias in the training set
that disadvantages one group over another (e.g., black people are discriminated more
than non-back people), limited availability of resources (e.g., one position available but
ten equally relevant candidates for the position), or the intrinsic design of the machine
learning algorithm (e.g., not all the training instances are equally considered during the
learning phase of the algorithm). We focus on the last aspect that generates unfairness
in information retrieval systems.
In this work, we discovered three unexpected behaviours in the well-known Lamb-

daRank algorithm and its derivatives, such as LambdaMART. i) we discovered that
LambdaMART are affected by gradient incoherencies that compromise the model learn-
ing. A gradient incoherency is when an item with high relevance to the query receives
a downward push larger than an item with lower relevance. ii) we discovered that the
practice to optimise truncated information retrieval metrics (i.e., metrics optimised only
in the top-𝑘 position (i.e., those of interest to the users) to reduce the training time (i.e.,
to improve the algorithm efficiency) exacerbate the phenomena of gradient incoherency
that leads to worse model learning. iii) we discovered that truncated metric optimisation
introduces an undesired unfair comparison of items/documents in the training set. In
particular, we discovered that documents that are equally relevant to a query are treated



differently, to the detriment of equally relevant documents positioned lower down in the
ranking and which would most need to be pushed upward.
The main contribution of this work is Lambda-eX an improvement of LambdaMART

objective function, that extends the set of document pairs processed during training, to
optimise truncated ranking metrics (i.e., a more efficient training) while avoiding unfair
document comparison and the exacerbation in the number of gradients incoherencies.
We empirically demonstrated through five publicly available datasets that Lambda-eX
achieves statistically significant improvements in terms of NDCG than the baselines.
Moreover, Lambda-eX removes the exacerbation of the gradient incoherencies intro-
duced by truncated metric optimisation that compromise the exposure of documents
with respect to equally relevant documents without gradient incoherencies.

2 Gradient Incoherency and Unfair Document Comparison
Gradient-based learning algorithms, such as artificial neural networks or gradient-
boosted decision trees, run iterative updates to build a ranker that minimises a given
cost function 𝐶. For instance, gradient-boosted decision trees iteratively learn a new
tree that approximates 𝜕𝐶/𝜕𝑠𝑖 for each document 𝑑𝑖 in the training set 𝐷 and its score 𝑠𝑖.
Unfortunately, most IR metrics are rank-based: they depend on ranking 𝜋 rather than
on 𝑠𝑖. This makes the cost function either flat or non-differentiable. Note that 𝜋 is the
ranking over the documents 𝑑𝑖 ∈ 𝐷 sorted in decreasing order of scores 𝑠𝑖 predicted by
the ranker, and 𝜋[𝑖] denotes the position of document 𝑑𝑖 in the ranking.
LambdaRank’s cost function defined by Burges et al. (2006) is one of the most rel-

evant approaches used to tackle this problem, and it stems from the RankNet cost
proposed by Burges et al. (2005), which is enhanced by considering the impact on the
IR metric. The gradient is computed on the basis of pair-wise lambdas 𝜆𝑖𝑗 as follows:

𝜆𝑖 = ∑
𝑗∶(𝑖,𝑗)∈𝐼

𝜆𝑖𝑗 − ∑
𝑘∶(𝑘,𝑖)∈𝐼

𝜆𝑘𝑖 (1)

where 𝐼 is the set of ordered documents pairs (𝑖, 𝑗) such that 𝑦𝑖 > 𝑦𝑗 , i.e., 𝐼 = {(𝑖, 𝑗) ∣
𝑑𝑖, 𝑑𝑗 ∈ 𝐷 ∧ 𝑦𝑖 > 𝑦𝑗}. The value of 𝜆𝑖𝑗 estimates the change on the cost function 𝐶 when
the distance between the two scores 𝑠𝑖 and 𝑠𝑗 is modified.
To manage user behaviour and increase training efficiency, real-world applications of

information retrieval systems mostly try to optimise the effectiveness only for the first 𝑘
results. IR metrics naturally provide a truncated version, i.e. NDCG@𝑘 is computed by
considering only the contribution of the top-𝑘 ranked documents.
By training the model to optimise a truncated metric 𝑍 to a certain truncation level

𝜏 , pairs of documents ranked beyond 𝜏 are not considered since the corresponding
contribution to the metric is equal to 0. Thus, in order to reduce the training time, the
number of document pairs in ℐ is limited while computing the gradients 𝜆𝑖 in Equation 1
by replacing the set 𝐼 with 𝐼𝜏 = {(𝑖, 𝑗) | 𝑑𝑖, 𝑑𝑗 ∈ 𝐷 ∧ 𝑦𝑖 > 𝑦𝑗 ∧min(𝜋[𝑖], 𝜋[𝑗]) ≤ 𝜏}.
It is important to note that, although closely related, the truncation level 𝜏 is different

from the metric cutoff 𝑘. The former affects the number of document pairs to process,
and the latter affects the evaluation of the metric. Moreover, they may not be equal, i.e.
𝜏 may be slightly larger than 𝑘 to process more pairs during the training phase.
Table 1 shows an example of LambdaMART gradients when maximising NDCG. The

query has only three documents with their ranks 𝜋[𝑖] and scores 𝑠𝑖 predicted by the
model, and relevance label 𝑦𝑖. The top-ranked document with relevance equal to 4 and



Table 1
Detailed computation of LambdaMART gradients.

𝑑𝑖 𝜋[𝑖] 𝑦𝑖 𝑠𝑖 𝜆𝑖
𝑑1 1 4 0.02 𝜆1 = 𝜆12 + 𝜆13 ≈ 0.176 + 0.221 ≈ 0.397
𝑑2 2 0 0.01 𝜆2 = −𝜆12 − 𝜆32 ≈ −0.176 − 0.004 ≈ −0.180
𝑑3 3 1 0.00 𝜆3 = −𝜆13 + 𝜆32 ≈ −0.221 + 0.004 ≈ −0.217

is correctly pushed up by the gradient 𝜆1. Interestingly enough, the second and third
documents are misranked with labels 0 and 1 respectively. The LambdaMART gradient
is negative for both documents, but the document with the larger label is pushed down
with greater strength. We may conclude that such gradients are not going to improve
the ranking but rather increase the gap between the two misranked documents. We
call this phenomenon gradients incoherency.
To explain in detail the reason for such behaviour, in Table 1 we report the com-

putation of the document gradients 𝜆𝑖 as a function of the pair-wise 𝜆𝑖𝑗 according to
Equation 1 in case of the NDCG metric. Document 𝑑1 has a positive gradient 𝜆1 as
it is ranked higher than documents with smaller relevance labels. Document 𝑑2 is the
least relevant and receives a negative gradient contribution from both the other doc-
uments. Unexpectedly, document 𝑑3 receives the strongest downward push even if it
has a higher label than 𝑑2. The reason is that swapping document 𝑑1 with 𝑑3 has a larger
impact on the NDCG than swapping 𝑑1 with 𝑑2, resulting in 𝜆13 > 𝜆12. LambdaMART
prefers avoiding the risk of moving 𝑑1 to the third position rather than pushing 𝑑3 up to
the second place. Indeed, this comes from the discount factor of NDCG metric that
demotes documents’ contributions in the lower ranks. These gradients clearly push the
ranking away from the ideal configuration as we would prefer having 𝜆3 larger than 𝜆2.
The phenomenon of gradient incoherencies is significantly further exacerbated when

optimising truncated metrics. This is because by removing (𝑖, 𝑗) pairs from set 𝐼 , the 𝜆𝑖
gradients of the relevant documents under 𝜏 will be incomplete since they will lose some
𝜆𝑖𝑗 . As a result, relevant documents below 𝜏 will receive even less upward push.
Moreover, the substitution of the set 𝐼 with 𝐼𝜏 introduces an unfair optimisation pro-

cess among equally relevant documents. In fact, while optimising truncated metric,
two equally relevant documents can receive a different number of 𝜆𝑖𝑗 contributions, not
experienced during un-truncated metric optimisation.
In Figure 1, it is possible to see a clear example of unfair document comparison intro-

duced by truncated metric optimisation. In the example, a truncated metric optimisation
is forced by implying 𝜏 = 1. When truncated metric optimisation is used the document
in position 1 with relevance 2 receives more contribution from the other documents than
the document in position 2 while being equally relevant. In fact, the document in posi-
tion 2 receives contribution 𝜆𝑖𝑗 = 0 from all documents below the truncation level, while
the document in position 1 receives contribution 𝜆𝑖𝑗 ≥ 0.

3 Lambda-eX
The main contribution of this work is Lambda-eX, a learning algorithm able to cancel the
gradient incoherency exacerbation and avoid the introduction of unfair document com-
parisons. We claim that the exacerbation of the incoherencies and the unfair compar-
isons are due to missing computations of the 𝜆𝑖𝑗 gradients. More specifically, relevant
documents that are not ranked above the truncation level are not evaluated against all
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Figure 1: Examples of unfair document comparison. When truncated metric optimisation is
used (e.g., 𝜏 = 1), the document in position 1 with relevance 2 receives more contribution from
the other documents than the document in position 2 while being equally relevant.

the candidate documents of the query but only against the top-𝑘, and this ignores some
of the 𝜆𝑖𝑗 and under-estimates their gradient.
To keep the training focused on user behaviour and tackle the problem of gradient in-

coherencies and unfair document comparison, we designed Lambda-eX, which extends
the set of document pairs considered by LambdaMART when computing gradients. To
achieve this goal, we define a set of documents 𝑋 ⊆ 𝐷 so as to include in 𝑋 all the
documents for which we want a complete gradient estimation, i.e., those that deserve
or not to be ranked at the top positions. Moreover, the set 𝒳 contains the documents
for which we want a fair comparison. As mentioned, 𝑋 is a subset of 𝐷, so not all the
documents in 𝐷 are provided with a fair comparison. However, due to a limited number
of positions effectively viewed by the users, i.e., the top-𝑘 positions, we do not require
that all documents have a fair comparison, but just those that should be ranked in the
top-𝑘 position to maximise the user need, i.e., the relevance to the user query.
Lambda-eX thus computes each 𝜆𝑖 gradient as in Equation 1 but basing on the set:

𝐼𝑋 = {(𝑖, 𝑗) | 𝑑𝑖, 𝑑𝑗 ∈ 𝐷 ∧ 𝑦𝑖 > 𝑦𝑗 ∧ (𝑑𝑖 ∈ 𝑋 ∨ 𝑑𝑗 ∈ 𝑋)}
How does Lambda-eX populate the set 𝑋? Let 𝑘 be the cutoff of the IR metric being

optimised. Lambda-eX includes in 𝑋 all the documents ranked in the top-𝑘 positions



by the current model and the contender documents below the cutoff 𝑘. The contender
documents are those not placed in the top-𝑘 positions but required to maximise the
ranking metric. Since the number of contender documents could be large, to limit the
size of 𝑋 to about 𝑘, Lambda-eX uses some criteria to select the contender documents
to include in 𝑋 . We propose three different ways to select the contender documents.

• static: let ℎ be the number of documents that are required to maximise the metric
𝑍 , but the model did not rank among the top-𝑘 positions. This strategy adds in 𝑋
the ℎmost relevant documents not yet in the top-𝑘. This strategy provides a partial
fair document compassion since it compares the minimal number of documents
that deserve to be in the top-𝑘 in order minimise the training time, i.e., the training
efficiency.

• random: analogous to static, but ties are broken randomly instead of rank-based.
A random selection allows the model to be fairer since it compares all contenders
during training and improves model generalisation.

• all: analogous to static, but ties are not broken. If there are more than ℎ docu-
ments with the desired relevant labels, they are all included in 𝑋 . This enhances
generalisation and fairness at the expense of efficiency. With the all strategy, all
documents that should be ranked in the top-𝑘 are compared with the others, so
providing the fairest strategy among the three.

We also propose two hybrid variants: all-static and all-random. The goal is to limit
the size of 𝑋 . Depending on the query, the all may potentially include all the relevant
documents. To avoid such blow-up of 𝑋 , the hybrid strategies roll back to either static
or random in this degenerate case; otherwise, they implement the all strategy.
To evaluate the effectiveness of the proposed approach, we defined two baselines:

LambdaMART that optimise the truncated version of NDCG metric with truncation level
𝜏 equal to the metric cutoff 𝑘 and the other with 𝜏 = 𝑘 + 3 as suggested in Corporation
(2023). We compared the baselines with each version of Lambda-eX defined in Sec-
tion 3. In Table 2, we summarise the performance for each model. The results show
how Lambda-eX obtains statistical significance improvements by overcoming the ex-
acerbation in gradients incoherencies introduced by LambdaMART when optimising a
truncated metric.

4 Conclusion
We have shown that LambdaMART is affected by incoherencies in the computation
of the gradients, exacerbated by the truncation level. We showed that the training
efficiency introduced by truncatedmetric optimisation comes at the expanses of fairness
between equally relevant documents. We designed a new approach called Lambda-eX
to counter these issues while keeping the focus on the metric to be optimised and the
training efficiency. Through extensive experiments, we have shown that Lambda-eX is
able to achieve a statistically significant improvement with respect to the baselines.



Table 2
Statistically significant improvement w.r.t. LambdaMART𝜏=𝑘+3 according to Fisher’s randomisa-
tion test defined by Fisher (1935) (with a two-sided 𝑝-value) are marked with bold (𝑝 = 0.05) and
bold-italic (𝑝 = 0.01).

dataset NDCG@k LambdaMART Lambda-eX
k 𝜏 =𝑘 𝜏 =𝑘+3 static random all all-static all-random

Istella-X 5 73.32 75.35** 75.19** 75.17** 75.15** 75.19** 75.17**
Istella-S 5 70.19 70.64* 70.67** 70.71** 70.55 70.65* 70.64*
Istella-F 5 67.02 67.62** 67.55** 67.67** 67.50** 67.68** 67.71**
Yahoo! Set 1 5 75.35 75.85** 75.67 75.59 75.63 75.73 75.67
MSLR-30K 5 50.66 51.22 50.95 50.96 51.24 51.42* 51.38

Istella-X 10 77.53 78.61 78.61 78.61 78.61 78.61 78.61
Istella-S 10 76.35 76.71** 76.66** 76.70** 76.69** 76.72** 76.70**
Istella-F 10 71.85 72.39** 72.42** 72.46** 72.42** 72.35** 72.46**
Yahoo! Set 1 10 79.62 79.84 79.66 79.75 79.78 79.81 79.80
MSLR-30K 10 52.66 52.98 52.96 53.08 53.23* 53.19 53.14

Istella-X 15 79.00 79.45 79.44 79.48 79.44 79.44 79.48
Istella-S 15 80.63 80.73* 80.69 80.71* 80.75** 80.80** 80.73*
Istella-F 15 75.46 75.87** 75.94** 75.90** 75.92** 76.00** 76.00**
Yahoo! Set 1 15 82.01 82.03 81.94 82.07 82.04 82.07 82.04
MSLR-30K 15 54.60 54.67 54.82 54.93** 54.84 54.75 54.83
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